Tag: Raritan River

Watershed Highlights: Duke Island Park walking tour

Join LRWP Board Member Professor David Tulloch as he leads our second “Watershed Highlights and Hidden Streams” walking tour of 2019!

Professor Tulloch will help us connect the old constructed landscapes of the canal at Duke Island County Park through a new greenway that has been developed along the Raritan and crosses over into the Duke Farms properties.

Many area residents are likely familiar with individual pieces of these recreation spaces. Fewer have made the walk to connect them all. That’s what we’ll do from 9-11 AM on Saturday May 18.

Details to follow.

Mill Brook: Story of an Urban Stream

Join us on Sunday March 24, 2PM at the Highland Park Public Library to learn about Mill Brook – a Tributary of the Raritan River.
 
LRWP Streamkeeper, Highland Park resident and Rutgers Environmental Steward Susan Edmunds will present on her internship work with the LRWP, through which she documented the history of this waterway that runs through Edison and Highland Park. Following Susan’s presentation, Rutgers Graduate Student Jillian Dorsey (Landscape Architecture) will present findings from her thesis research on Mill Brook, highlighting steps property owners can take to protect their urban streams.
 
Sponsored by the LRWP, Highland Park Historical Commission, Highland Park Environmental Commission, Native Plant Society of NJ – Highland Park Chapter.
Please contact Heather Fenyk for more information: hfenyk AT lowerraritanwatershed DOT org

Expect the Unexpected

Article and photos by “Voices of the Watershed” Contributor Joe Mish

A white fronted goose, rarely seen west of the Mississippi river, enjoys grazing on central New Jersey grass.

Long before President Eisenhower signed the interstate highway bill into law in 1956, The Atlantic, Central and Pacific flyways served as major superhighways for migrating birds.

The primary exit ramps for these super flyways are the rivers which radiate out along the north-south migration routes to distribute the migrating birds far and wide.

New Jersey sits directly on the Atlantic flyway, bounded by the Delaware River and the Atlantic Ocean. Within the state’s interior flows the Raritan River, the longest inland river in the state which serves as a major migratory off ramp.

The confluence of the North and South Branches may then be considered the prime visitors center and rest area, as birds funnel down the Raritan to disperse inland.

Look at a colored distribution map in any bird book and discover that many species are specific to defined regions.

You might not expect to see a rufous hummingbird from the northern Pacific coast, sipping nectar in central New Jersey. However, in 2012, a rufous hummer showed up in our midst and stayed the winter, surviving by the kindness of human intervention. Marlene Scocco reached out to this wayward hummer providing food and shelter, causing a stir in the birding community which gratefully documented this migratory anomaly.

Checking the records for rare hummingbird visitors to New Jersey, other hummer species like the calliope and green violet eared were also documented.

How these birds end up on the east coast is pure speculation. The point is they do and they are here for you to discover.

Feathered visitors from faraway places to the Raritan valley are not just limited to hummingbirds. In 1963 I was handed a small owl taken from a guard tower in the Raritan arsenal. It died shortly after. I mentioned this to a friend’s dad who was an avid bird watcher. Told him it was a boreal owl. He smiled and assured me it was probably a saw whet owl. We ended up at the Newark Museum and showed it to the curator, Irving H. Black. Confusion ensued and experts from across the country were consulted. The experts concluded the bird was indeed a boreal owl. It set a new record for the southernmost sighting in the US. The boreal owl, briefly known as the Richardson owl, is a fulltime resident of the coniferous forests of the arctic region. The owl is preserved as a study skin at the Newark museum.

The visitors keep coming. In mid March of this year I noticed an inconsistency in the color pattern of a flock of grazing geese, as I drove by. The geese blended together in one giant mosaic, painted with repetitive splashes of black, white and brown. I pulled over and focused on the colors that didn’t belong.

I was looking at a white fronted goose, another bird that was obviously unfamiliar with distribution maps found in bird books.

The white fronted goose is rarely seen east of the Mississippi river, the main artery of the central flyway. To see a white fronted goose in central NJ is therefore an unexpected surprise and evidence that nature has a tendency to violate scientific generalizations.

The following week, a Canada goose with an orange and white collar marked OHOX was observed along rt 22. It also had a metal band on its left leg. While editing images, I was shocked to see the goose standing next to it also wore a leg band. Reporting this goose to the USGS bird banding website I was provided with a certificate noting that the goose was a female, banded as a flightless gosling near Varennes, Quebec, Canada on the Fourth of July, 2016.

Adding to the distinguished list of local visitors was the osprey I observed April 7, 2016, just upstream of the confluence of the North and South branch. The osprey had a blue plastic band on its left leg, with stacked letters, DV, visible on one of the images taken. Again, making a report to the USGS banding website, a certificate soon arrived, stating the osprey was born on a bulkhead in Portland, Maine and banded on July 27, 2011. To report a banded bird, visit the USGS bird banding website, bandreports@usgs.gov

The spring migration is now in full swing. And along with colorful warblers, ruby throated hummingbirds, woodcock and osprey, come the errant travelers.

Diverging from their evolutionary migration patterns, these intrepid winged visitors explode the myth that, “birds of a feather stick together”.

Migrating birds that nest in our region, along with birds just passing through, are now appearing along our waterways. The confluence that forms the Raritan River is the staging area that hosts a feathered extravaganza of unimaginable variety.

Author Joe Mish has been running wild in New Jersey since childhood when he found ways to escape his mother’s watchful eyes. He continues to trek the swamps, rivers and thickets seeking to share, with the residents and visitors, all of the state’s natural beauty hidden within full view. To read more of his writing and view more of his gorgeous photographs visit Winter Bear Rising, his wordpress blog. Joe’s series “Nature on the Raritan, Hidden in Plain View” runs monthly as part of the LRWP “Voices of the Watershed” series. Writing and photos used with permission from the author. Contact jjmish57@msn.com. See more articles and photos at winterbearrising.wordpress.com.

Rutgers Eco Preserve Walking Tour with Professor David Tulloch

For the LRWP’s inaugural “Watershed Highlights and Hidden Streams: Walks of the Watershed” Rutgers Professor David Tulloch will help us trace connections between Buell Brook and the Raritan River, starting at Johnson Park in Piscataway and traveling to Rutgers’ Eco Preserve.

Many people visit Rutgers’ Eco Preserve and don’t think of its connection to the Raritan River, even when they are only a few hundreds of yards away from it. This walk will look more at the connection and what it means.

We will travel from Johnson Park and Raritan Landing to the EcoPreserve, making the connection between the Raritan and this special campus feature.

Johnson Park/Raritan Landing – 1890s

Meet promptly at 3 PM in the Easternmost Parking lot at Johnson Park, near the Raritan (40.505693, -74.444186). Coming from Highland Park on Raritan Ave, go under the railroad trestle, make a left into Johnson park, and the meeting place is the 1st parking lot, on the right.

We will start with a gentler exploration of the riverbank and mouths of the Mill and Buell Brooks (and maybe more) and then head up into the Eco Preserve.

Wear comfortable walking shoes, clothing appropriate for the weather, and bring water. We expect the walk to run from 3-5 PM.

(Making) Room for the River: Applying Dutch River Management to the Raritan

Article and images (except as noted) by Sanja Martic, Rutgers Department of Landscape Architecture Graduate Student.

“Man wants to take the river’s natural storage reservoir and make no compensation for it. The river contends it is against Natural Law and cannot be done. The river is right.”
James P. Kemper, New Orleans, 1927.



The Dutch Room for the River Program (RfR) was conceived in 2007 as an integrated river basin management strategy for the low-lying flood prone and densely populated areas of the Netherlands. As part of this Program, water management is conducted via a specialized regional “Water Board,” working in partnership with the Dutch National Ministry and the Ministries for Transport, Public Works and Water Management. Through RfR the Dutch Water Board takes a four-pronged approach to water management. The four key characteristics of the RfR approach include: 1) large scale river region landscape architectural design thinking; 2) a focus on collaboration, with landscape architecture playing a facilitating role; 3) considering the landscape as a system of layers; and 4) anticipating that natural processes will change and enhance the design over time.

As in the Netherlands, significant portions of New Jersey’s Lower Raritan River are in low-lying densely populated areas. Flood protection is of paramount importance and a matter of human safety and economic security. However, the Home Rule focus of New Jersey’s local governance limits the potential for thinking in a landscape context, no comparable “Water Board” serves as coordinating entity for water management, flood control prioritizes human land use layers, and engineering controls trump considerations of natural hydrological processes and flows. There is much to learn from the Dutch RfR example. In what follows we provide background information on RfR, and consider the Dutch Water Management approach in the context of New Jersey’s Raritan River and Lower Raritan Watershed.

Historic Approach to River Basin Management

In riverine areas around the world, the industrial revolution demanded capitalization of the river’s territory and its water. As a result, many river basins were heavily engineered: rivers streamlined, river basins minimized, and creeks and small streams culverted or replaced by canals[1]. These practices, in combination with development over time, resulted in floodplains that restricted the river and required repeated heightening of flood defenses[2]. There was no appreciation for the river ecosystems, and water was seen as a threat and as something that needed to be controlled. Over time, conflicts arose regarding use of the floodplain and the its water. And the Industrial Revolution and subsequent development left behind a lasting pollution legacy: abandoned infrastructure and degraded water and soil quality. Meanwhile, the expanding population’s need for potable water and space for a safe habitation increased, causing a decline in the river basin surface. In recent years, rising intensity and quantity of extreme precipitation events associated with a changing climate, coupled with increase of the impervious surface cover, further complicate water management issues.

Room for the River (RfR) Emergence and Approach

In the Netherlands, traditional water management methods were challenged following destructive floods in 1995, caused by record extreme precipitation events. It was clear that new flood levels required a different approach towards river management. Different approaches to water management call for different methods: many rely heavily on engineering while others emphasize a more natural approach. Room for the River Program (RfR) finds a middle ground. Instead of gradually reducing the area that rivers occupy, this approach allows the river to expand over a larger territory[3]. RfR brings together the worlds of water management and spatial planning, engineering and ecology. Tools are varied and include dredging at one extreme, and measuring spatial quality on the other, and they are put into service of two main objectives: improving safety by reducing flooding of riverine areas, and “contributing to the improvement of spatial quality of the riverine area”[4]. Although hard to quantify, this second goal is particularly interesting from the landscape architecture perspective as it considers quality of the space.

Spatial quality within the RfR approach is defined as “a property of the resulting landscape after a plan has been implemented.”[5] A good design is further judged by three criteria: hydraulic effectiveness, ecological robustness and cultural meaning and aesthetics. Cultural meaning and aesthetics criteria call for enhancing the scenic beauty, tailored to a range of sites that could be classified as natural, urban or countryside. Ecological robustness endorses designs that are long lasting, self-sustained, build upon natural processes, and are low maintenance. This is achieved through combining natural hydrology with morphological and biotic processes to achieve stability in riverbed and floodplain.[6] This means that plans have to be functional in the case of floods, but at other times must accommodate livability, wildlife habitats and areas usable as a public good. Design is informal and natural while providing maximum access for recreation, with spaces intended to reveal the spirit of each individual site of intervention.

Room for the River (RfR) Implementation and Practical Measures

In the Dutch model, spatial quality assessment requires development of a special Q-team (quality team) composed of members from different but complimentary disciplinary backgrounds. The Q-team’s role is to produce an independent recommendation on enhancing spatial quality through coaching designers and planners, peer review of the designs and plans, and regular communication to the Ministries of Transportation, Public Works and Water Management[7]. This calls for significant transdisciplinary cooperation between planning and design, with an equal role for the landscape architect, urban planner, river engineer, ecologist and physical geographer. Practical measures (Figure 1) are applicable at large scale and fall into three categories ranked by complexity of integration of flood risk measures with spatial measures. These categories include technical measures (deepening the river bed, lowering groynes, strengthening dikes), measures within the banks (lowering the floodplains, removing obstacles), and measures beyond the banks (high-water channel building, dike relocation, water storage). In addition to evaluating project’s outcome, the team also evaluates the quality of the integrative collaborative design process.

Figure 1: Different types of measures in the RfR program
Source: Practical Measures, from Room for the River Fact Sheet

Precedent for RfR in the United States

The RfR approach is not entirely new to the United States. An early similar effort was forwarded in New Orleans in 1927, following devastating flooding events in the Mississippi River delta. Like the Dutch who relied on dikes for flood protection, the Mississippi delta community relied on constant raising and enforcing levees, increasingly restricting the surface size of the natural flood plain. The 1927 flood prompted a reevaluation of the Mississippi River management approach. Official Congressional hearings were held and involved the U.S. Army Corps of Engineers, the Mississippi River Commission and expert witnesses such as Gifford Pinchot[8]. Discussion revolved around engineered control of the river proposed by the Army Corps of Engineers, and an approach in which nature would be allowed more leeway[9] supported by Pinchot, James Kemper and others. The latter view resembles the RfR approach as it calls for allowing more room for the river through widening the flood plain.

RfR Methodology

1. Large-Scale Design (Entire river region)

The large scale landscape architectural design approach considers “not only detailing of small-scale elements, but also at the scale of the river system as a whole”. [10]

2. Collaboration

The landscape architect plays a central role of coordinator between planners, architects and other partners. Fliervoet and Den Born studied and evaluated the RfR’s collaborative process from a stakeholders’ perspective. They concluded that the success of the approach is highly dependent on the cooperation and collaboration of multiple entities occupying the watershed with emphasis on the local knowledge. The biggest obstacles to collaboration stated by the participants, were the lack of an overarching, integrated maintenance vision and a lack of coordination between the authorities.[11]

3. Considering the Landscape as a system of layers

o        Basis of Landscape (soil, water, ecosystems)

o        Network Layer (roads, waterways energy infrastructure)

o        Occupation and Land Use (living, working, recreation)

o        Time Layer (all layers develop within their own time scale)

4. Creating Conditions: Responding to natural processes

Natural processes are expected to change and enhance design over time.

Applying the RfR Methodology to the Raritan

Large-scale Design of the Raritan River Floodplain and Regional Network

The first characteristic, the large scale of design as applied to the Lower Raritan, requires creating a comprehensive masterplan with projects spanning the entire Raritan watershed. RfR site plans would become small parts of a large Raritan Watershed Masterplan. The masterplan would be guided by a comprehensive vision of integrated water management, with a regional greenway connection as an integral part. Directly connecting the City of New Brunswick to the greenway network would be a key component of the masterplan, as New Brunswick is the largest settlement on the banks of the Raritan River. Collaboration between many governing bodies is essential. At the federal level the governing bodies to involve include USACE, USCG and the Advisory Council on Historic Preservation. At a state level governing bodies to involve include NJDOT, NJDEP and Land Use Regulations and Ecological Services Field Office. Regionally the Delaware and Raritan Canal Commission and counties such as Middlesex, Somerset, Hunterdon and others should be involved. At the local level the municipalities along the Raritan River banks including New Brunswick, Piscataway, Franklin Township etc. would require representation.

Large scale design requires examination of large-scale network connections. Analysis in the Raritan River context reveals several greenway network opportunities (Figure 2). Metropolitan areas of New York City and Washington D.C. are roughly framed by the Appalachian Trail to the North and the proposed alignment of the East Coast Greenway to the South. They are further enclosed by the major East Coast rivers that bisect the Trail and the Greenway on their way to the Atlantic Ocean. The Hudson River Valley to the East, the Delaware and Lehigh National Heritage Corridor, and the Chesapeake and Ohio Canal to the west all form a regional trail system matrix. This blue and green matrix provides unique opportunities for cross connections of the corridors and interactions with nature and culture to one of the world’s densest contiguous urban populations.

The East Coast Greenway is an aspiring walking and biking route stretching the length of the US East Coast with southern terminus in Key West, Florida and northern Maine. Once actualized, the East Coast Greenway will be 3000 miles long and epitomize the bond between communities and nature by connecting the exist green open space along its route into a unique linear corridor. Initiated in 1991, with forming of the East Coast Greenway Alliance, the vision of Greenway designers, “represents a commitment to public health, environmental sustainability, economic development, and civic engagement”[12].

The existing Appalachian National Scenic Trail, which partially passes along New Jersey’s northern border, is currently the longest hiking footpath in the world at 2190 miles long[13]. It was first proposed by a regional planner Benton MacKaye in a 1921 document titled “An Appalachian Trail: A Project in Regional Planning”.  MacKaye’s vision initiated the idea of land preservation for the purposes of recreation and conservation. The idea started to materialize in 1925 and was actualized in 2014 when the last stretch of the Trail was formally acquired and protected.  Today, the trail is visited by over 3 million visitors a year as it bisects fourteen US States from Georgia to Maine.[14]

The East Coast Greenway’s proposed alignment crosses the narrow waist of New Jersey using the D&R Canal Park as a major junction. Canal Park’s Masterplan recognizes the most important quality possessed by this linear park to be the role it can perform as a connector. Canal Park no longer links New York City and Philadelphia, but it does join central New Jersey communities, different land forms and different kinds of natural areas, and connects New Jersey with its heritage[15]. Extending the Canal’s connection back into the city of New Brunswick would align with the Canal Commission’s Masterplan and benefit New Brunswick’s future development.

The Delaware and Lehigh National Heritage Corridor runs along the Delaware River on the Pennsylvania side, parallel to the D&R Canal Park. It is an indirect connection between the proposed East Coast Greenway, through the D&R Canal Park to the Appalachian Trail. It is also an example of a linear park run by a nonprofit organization, while Chesapeake and Ohio Canal is a linear park that is part of the National Park system. The Chesapeake and Ohio Canal is another significant connector between the Appalachian Trail and the East Coast Greenway close to a major metropolitan area.

When the Delaware and Raritan Canal was built in the 1930s it permanently linked the Delaware and Raritan watersheds, creating opportunities for connection. Since that time, construction of Route 18 through New Brunswick, which established a several mile stretch of roadway immediately adjacent to the Raritan, severed this historic network connection, in particular in the area between Buccleuch Park and the Landing Lane Bridge. Today, the City of New Brunswick’s unique geographic position could once again benefit future development should access impediments to the D&R Canal Park be removed, resulting in expanded access to not only Canal Park but regional networks like the East Coast Greenway. There would be many mutual gains: the local community would have better access to nature and everyday recreation and day-hiking without having to drive to the trail. New Brunswick’s rich local history would add to the richness of the trail’s experience. The local economy would benefit from hiking and biking traffic generated by the Greenway. Finally, being a part of the future East Coast Greenway’s shared vision could be an invigorating driver of the nature stewardship and future community and economic development.

Figure 2: East Coast Greenway Network Opportunities

Collaboration of Local, Regional, National and State Partners

Collaboration and coordination, conducted by a landscape architect, may include working with a variety of professional partners on a local level. In addition to planners and architects, other professions to engage include social scientists, geographers, ecologists, river engineers, biologists, historians, archeologists and civil engineers.

Considering the Raritan River Floodplain and Watershed Landscape as a system of layers

The RfR “system of layers” approach consists of a base layer, network layer, potential for use layer and time layer (Figure 3). Layers provide a basis for site evaluation within the Lower Raritan. Expanding the original RfR methodology, we have conceived of each of the four categories of layers as worth 25 points for a total of a 100-point evaluation system. The lower the score for specific site, the better the opportunity for enhancing it.

Figure 3: Adopted Diagram of Layers of Landscape

For example, considering New Brunswick in relation to the regional greenway network, the four areas identified as having the best opportunity for creating connections between the New Brunswick and regional greenways are the Key Connector Streets (Urban Core Green and Blue Corridors), Waterfront Access Points, Raritan Bike Path, and the “D&R Canal Link” (Figure 4). These] specific sites should then be evaluated for their soil, water and air quality within the base layer, and for the existing roads, railroads, bridges/tunnels, walking and biking paths and green networks within the network layer. The Network Layer evaluates the existing networks presence and connectivity. Points (0-5) are given for the presence of the networks within the site and more points for their current connectivity. All the sites have a presence of at least one network, however in some cases those networks are enhancing and in others reducing walking and biking connectivity. Increasing connectivity becomes a goal for this layer.

Figure 4: Simplified Connections Diagram

The Base Layer evaluates the soil, water, air, plant and animal life conditions of the landscape. 0-5 points for soil quality are allocated depending on its permeability as well as its ability to support life. In the urban environment soil is often covered by pervious surface or is heavily compacted resulting in a low rating. Water movement is evaluated based on the speed of its movement within the site. Faster movement (poor infiltration) is rated lower. Water quality is associated with the ability of site to treat the stormwater runoff. Water that leaves the site cleaner results in higher points. Air quality depends on the site’s micro location. Sites near major roads with little vegetation are rated lower. Finally, existence of plant and animal life is rated depending on a level of presence. Based on the rating, design goals that emerge are: increasing surface permeability, slowing down runoff by retaining water in the landscape for longer periods, decreasing soil compaction, and creating conditions that support more plant and animal life.

Our addition to the methodology also includes expansion of the “potential for use layer” by which each of these sites are evaluated for their potential to support any of 25 different activities that could take place within the area once it is redesigned. The Potential for Use Layer allocates one point for each activity that can currently take place within an area. The goal for this layer becomes increasing the number of future potential use of the space.

Finally, the time layer evaluates presence of historic and cultural artifacts on one end and a potential for future ecosystem health improvement on the other. Sites that contain historic and cultural artifacts are rated higher, as well as the sites that will be able to, over time, enhance the ecosystem health. Ecosystem health is prioritized over the existence of historic and cultural artifact. For example, a city street has less potential for the improvement of the future ecosystem health than the river bank.


Figure 5:  Proposed Connections Diagram

The redesign of the existing key connector streets within the City of New Brunswick enhances the biking and walking experience, while leading to the waterfront access points. Commercial and Joyce Kilmer Avenues are green corridors, chosen for their proximity to the local schools, green open space, highest population density and wide traffic lanes. These two thoroughfares have a great potential for “road diet” interventions, such as narrowing traffic lanes and adding bumpouts at street crossings in order to calm traffic and thus enhance safety of pedestrian and bicyclists. They would further create opportunities for bringing nature closer to the local communities by becoming way finders for the Raritan River as well as the green corridors with more pervious surface and vegetation (Figure 5).

Existing Roadway Surface
Bike lanes, pervious surface

Figure 6: Green Corridor Intervention
Source: Oregon Bicycle and Pedestrian Guide

Route 27 or French Street and Hamilton Street are already main routes of access that are further enhanced by adding new and improving existing bike lanes, and improving pedestrian experience by adding bump outs and lowering curbs. Similar interventions could be applied outside of the immediate study area. Franklin Township’s Franklin Boulevard is the next such opportunity. The existing Mile Run stream corridor, in conjunction with the key connector streets, forms a matrix of river connections. The Mile Run stream corridor is now accessible through this matrix, offering further opportunities for engagement with water and nature.

Figure 7: Bumpouts add sidewalk space, provide space for rain gardens, bike parking, etc. and shorten crossing distance. Minimum width lanes slow traffic.

Source: “Main Street: When a Highway Runs Through it”, Oregon Downtown Development Association

Access to the waterfront is strengthened using various traffic calming techniques such as raised, textured crossings, lowered speed limit and narrowed traffic lanes. These approaches ensure safety and an enhanced pedestrian experience. Redesigning the Raritan bike path by adding access points, widening its surface, and adding small, localized interventions helps create a sense of place and wayfinding. Materials and forms chosen for intervention help to further connect community to the unique industrial and postindustrial history and ecology of the place. Finally, the “Canal Link” links fragmented biking and walking paths ending within the area of the River Road, Landing Lane, Buccleuch Park and Spillway, through an elevated walkway bridging the impediments. This walkway becomes the final interlocking link restoring connection to the D&R Canal Park, East Coast Greenway and the Raritan.

A final key characteristic of the RfR program requires considering how including natural change over time can be integrated in the designed system, so that it could start functioning as a natural system. Within the landscape architecture field, time is always an important element considered in designing a landscape. The question: “How will a landscape change throughout the years?” is a core design consideration. However, change is usually considered as it relates to human use and needs. In the RfR case the emphasis is on the health of the entire ecosystem, and the ability of landscape to be “managed” by natural processes, thus making it self-sustained and supportive for all living beings. Choices of materials and forms should be made considering this final concern.[


[1]  Wiering and Arts, p 330.  

[2]  Rijke et al., “Room for the River.”, p 369.

[3] Rijke et al., “Room for the River.”, p. 369.

[4] Rijke et al., “Room for the River.”, p 369.

[5] Klijn et al., “Design Quality of Room-for-the-River Measures in the Netherlands.”, p 291.

[6] Klijn et al., p 292.

[7] Klijn et al., “Design Quality of Room-for-the-River Measures in the Netherlands.”, p 289.

[8] Ari Kelman, A River and Its City, p 190.

[9] Ari Kelman, A River and Its City, p 190.

[10] Way, River Cities, City Rivers, p 376.

[11] Fliervoet, van den Born, and Meijerink, “A Stakeholder’s Evaluation of Collaborative Processes for Maintaining    Multi-Functional Floodplains.”,p 185.

[12] https://www.greenway.org/about/the-east-coast-greenway, East Coast Greenway Alliance, 2018

[13]http://www.appalachiantrail.org/home/about-us/media-room, Appalachian Trail Conservancy, 2018

[14] http://www.appalachiantrail.org/home/about-us/history, Appalachian Trail Conservancy, 2018

[15] D&R Canal Park Revised Masterplan 1988, p 32.


Jimmy Rides Again!

Article and photos by Joe Mish

As elated as Lewis and Clark upon reaching the Colombia River, Jimmy and I proudly pose with our intrepid craft , “The Wild Turkey”, in the back of an old Ford Pickup

The eternal waters of the South Branch flow with memories and reflections, kept safe for those who have opened an account along its banks and written their story upon its waters.

I have a longstanding account, opened years ago, from which I make occasional withdrawals. The memories are recalled, polished with reflection and returned for safe keeping.

Hazy events, prompted by a scrap of paper that fell from one of my books, brought a canoe journey made decades before, into sharp focus. The lined, yellow paper, in my handwriting, was a record of time and places noted on a trip down the South Branch to the sea with my good friend Jim Serchio.

Jim worked across the hall from me in the pharmacology department at J&J. Intrigued by my stories of paddling solo to the mouth of the Raritan River; Jim recruited himself to join me on another run to the sea.

A hasty plan was hatched and a day chosen. We would launch from Main st in Clinton and paddle down to Keasbey. I would then walk to ‘Billy Vack’s Loop In’, an old iron workers bar located under the Parkway bridge, phone my brother-in-law, and get a ride in his pickup truck to my parent’s home, about three miles away.

The chosen canoe was my old canvas covered 1910 Old Town OTCA 16 named the “Wild Turkey”. Now stripped of canvas and covered with fiberglass, the hull was painted a flat, dead grass green and weighed in at about 85 pounds.

No cooler, just a couple of blue cushions and two guys in the canoe headed downstream. Jim was brilliant guy, studying biomedical engineering. I suppose it was his scientific inquisitiveness which finally prompted him, once we were underway, to ask, how long would the trip take. In my best carefully calculated estimation, I answered, “pretty much all day, we should be there before dark”.

As we passed under interstate 78, just after launching, I noted the time on my scrap of paper. Every time we passed a landmark, clock time was recorded.

Route 202 was reached at 9:23 am.

Looking over the sequence of shorthand notes, I now realize we had paddled under and over landmarks that are now gone or restored differently from their original form. Many of the metal bridges have been reconstructed over the years, their fieldstone supports now replicated by fieldstone veneer. I counted five bridges between Clinton and rt 31. The old dam we portaged below Dart’s mill is now essentially washed away. One bridge downstream of Neshanic station was not yet constructed. The scenery on the same trip today would be quite different.

Route 206 was reached at 1:09 pm

One entry made at 2:45 just before the second downstream pass under interstate 287 makes me smile; I wasn’t smiling then. I recorded the word ‘surgery’.

There was the wreckage of an old wooden bridge just before the last pass under I 287. It blocked our passage so we had to go up and over. As we set the heavy boat down on the rough planks, we did not see a huge spike that punctured the hull below the water line on the starboard side. The situation was looking grim as we were about to enter tide water on the last six hours of the trip. This meant navigating a running tide and staying clear of the main channel to avoid the large wakes churned up by tugboats and deep hulled pleasure craft.

Undaunted, we set the boat back in the water and began down river to see how bad the leak was. It was bad, real bad. How were we possibly going to finish. Pulling to shore, we looked around the debris, left by high tide, for a possible solution. Seeing a piece of yellow polypropylene rope, I had a flash of brilliance. As a kid I loved playing with fire, burning all sort of material including little plastic soldiers. The drops of melting plastic would quickly cool to form rock hard globs and even make a neat hissing sound as it dripped. On a hunch, I took the piece of rope, set it ablaze and dripped the plastic into the large hole in the hull. A perfect watertight fit and we were on our way.

At 4:30 we passed under rt 27, the low water encountered from 287 to Landing Lane Bridge road really slowed our progress. Now we had to deal with the wakes of large watercraft, which showed no mercy to two guys in a canoe. The resultant waves forced us to divert course, turn the bow into the wake and then re-correct to head downriver.

We passed the old drydock across from Crab Island at 6:15 and finally reached our destination under the New Jersey garden state parkway bridge, the former site of the Keasbey Outboard Motor Club, at 7:05pm.

While Jimmy entertained the bystanders, I headed up to Billy Vack’s to call my brother-in-law.

When I returned to the boat and Jimmy, someone asked where we put in. We were actually embarrassed to say, Clinton. We figured they wouldn’t believe us.

Our ride soon arrived and we could finally relax. We did it! Paddled from the NJ highlands to the Mouth of the Raritan river in about 12 hours in a 1910 Old Town canoe pressed into service for an epic journey to the sea.

Jimmy passed away a few years later from a medical procedure gone badly.

I still have the canoe and think fondly of the epic river journey shared with my good buddy Jim. The diary of times and places serves as a reference for memories and the ever changing river landscape.


Two of three pages from the ship’s diary, documents the journey of “The Wild Turkey” and its crew, serves to sharpen the memory of a dash to the sea by two friends in a turn of the century canoe.

Author Joe Mish has been running wild in New Jersey since childhood when he found ways to escape his mother’s watchful eyes. He continues to trek the swamps, rivers and thickets seeking to share, with the residents and visitors, all of the state’s natural beauty hidden within full view. To read more of his writing and view more of his gorgeous photographs visit Winter Bear Rising, his wordpress blog. Joe’s series “Nature on the Raritan, Hidden in Plain View” runs monthly as part of the LRWP “Voices of the Watershed” series. Writing and photos used with permission from the author.

Help track stream salt levels with free “Salt Watch” kit

Did you all get caught in the snow squall yesterday? Leaving Rutgers campus at 3:15 PM I traveled a good half mile in near white out conditions on Route 1 North. Skies cleared at about 3:40 PM, just as I started on the Goodkind Bridge across the Raritan River. There was no precipitation at all as I traced the path of a salt spreader for the length of the span. In fact, the squall was the result of a very narrow band of precipitation and lasted a mere 25 minutes. It left just .02 of melted snow in our gauge.

Salt trucks are loaded with 12-15 tons of salt, and spread rates are about 400 pounds per lane mile of roadway. In the time I was behind that truck – the quarter mile or so across the bridge – approximately 100 pounds of salt was spread on one roadway lane. This was after the snow had stopped.

A new study released January 23, 2018 by University of Maryland researchers is the first to assess long-term changes in freshwater salinity and pH at the continental scale. Drawn from data recorded at 232 U.S. Geological Survey monitoring sites across the country over the past 50 years, the analysis shows significant increases in both salinization and alkalinization. The study results also suggest a close link between the two properties, with different salt compounds combining to do more damage than any one salt on its own.

This map shows changes in the salt content of fresh water in rivers and streams across the United States over the past half century. Warmer colors indicate increasing salinity while cooler colors indicate decreasing salinity. The black dots represent the 232 US Geological Survey monitoring sites that provided data for the University of Maryland study. Image credit: Ryan Utz/Chatham University.

The results of this “freshwater salinization syndrome”? Infrastructure corrosion, contaminant mobilization, variations in coastal ocean acidification caused by increasingly alkaline river inputs, and significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity.

Simply put, fish and bugs that live in the Raritan River and our freshwater streams can’t survive in extra salty water. And while almost all of us in the Lower Raritan depend on local streams for drinking water, water treatment plants are not equipped to filter out the extra salt, so it ends up in tap water and corrodes pipes.

Road salt is everywhere during winter months. It keeps us safe on roads and sidewalks, but it can also pose a threat to fish and wildlife as well as human health. Of course we want to keep our roadways safe. We also must ensure that any salt spreading be conducted utilizing best practices for sustainable use, which includes calibrating salt spreading in accordance with weather forecasts and minimizing the amount of salt spread over sensitive habitats.

There are things you can do to help us better understand the impacts of road salt on our local environments. The Cary Institute of Ecosystem Studies presents several best management practices in their new report: “Road Salt: The Problem, The Solution, and How to Get There.” One key recommendation is identifying areas for low or no salt application. That is, basically creating a buffer of “no salt zones” around any water body. This report also identifies substitutes for road salt, and their relative impact on our waterways.

And the Izaak Walton League is recruiting volunteers to help measure salt levels in area streams to gauge the extent of salt spreading impact. With the information they gather they will be able to develop a targeted and prioritized approach to reduction of salts in local and national waters. The Izaak Walton League requires a simple registration process, after which participants receive a free chloride test kit. The kit includes test strips and instructions to measure the chloride level in local streams, then report out findings in a national database.

Dedicated Lower Raritan Watershed volunteer Raymond Croot is the first to submit “winter salt watch” data for a Lower Raritan stream.

November – the Far Side of Autumn

Article and photos by Joe Mish

Expect the unexpected when you look up into the leaf bare November woods. Here a red fox walks up a leaning tree to rest 30 feet high in the crotch of an adjoining tree. Red fox are not known to climb trees as are gray fox., but this fox channeled his inner gray fox to climb to dizzying heights.

November is the far side of autumn, a time when the colorful drapery of October is taken down to reveal the bare structure, upon which fluorescent orange leaves once hung.

The change in scenery is quite dramatic, as we pass through the colorful curtain that decorated the first full month of fall. I imagine standing behind a waterfall where colorful autumn leaves flow like cascading water to create a transparent wall of scarlet, orange and yellow. As I reach out to part the flowing colors, I step forward into November.

Linear brush strokes of gray and brown now dominate. Light and rain play with intensity of tone as the bare trees alternate between tans and gray to darker shades of brown and black. Rain saturates the branches to shift subtle earth tones to the bold end of their color spectrum.

The fading light of dusk and early light of dawn erase all color to turn trees into black silhouettes. The interlaced network of branches and solitary trees become one dimensional, as any perception of depth is lost against the stark contrast enhanced by the loss of daylight.

A dynamic lightshow in the sky then commences with a pale yellow glow as the sun departs over the horizon to melt into a pool of fiery orange. When the unmoving silhouetted trees are viewed against the ever changing celestial color spectrum, the still scene becomes a cinematic event.

Stars begin to appear well before the sun’s aura fades. Their sparkling silver brilliance is held against an even colored, dark blue night sky, making the perception of depth impossible to detect. Here, the background is static and the stars sparkle with energy. Just the opposite occurs where trees appear one dimensional and static, while the sky is alive with changing color.

All these theatric opposites combine in a single scene to create an inspiring, though brief preface, to the end of a November day.

A walk through the November woods cannot be more dramatically different than experienced a month before.

Strolling within the woods, beneath the canopy of trees, now without their leafy crowns, the lattice work of a branched arbor is apparent. Since late spring, a cloud of leaves dominated the view, banning shadows and sunlight.

A day time stroll on a sunny day or moonlit night, allows light to play with trunk and limb. Gnarled branches, which fought for their place in the sun, form grotesque figures that groan in the wind. The source of the sounds impossible to locate, lend a ghostly atmosphere even in the light of day. Shadows that begin to arise from a subterranean prison at the base of large trees, appear as immovable as the tree from which it escaped.

Turn away and back to find the shadow has imperceptibly moved, as it circles the tree to close the distance between you.

Walk along silently on the rain and color soaked carpet of October and let your imagination run wild. Animals and portions of human like figures, frozen in the transition of creation, hang like spare parts growing from trees.

While November is no one’s idea of autumn, given the cold, frost, barren landscape and introductory snowfalls, the month ends 21 days short of winter.

Author Joe Mish has been running wild in New Jersey since childhood when he found ways to escape his mother’s watchful eyes. He continues to trek the swamps, rivers and thickets seeking to share, with the residents and visitors, all of the state’s natural beauty hidden within full view. To read more of his writing and view more of his gorgeous photographs visit Winter Bear Rising, his wordpress blog. Joe’s series “Nature on the Raritan, Hidden in Plain View” runs monthly as part of the LRWP “Voices of the Watershed” series. Writing and photos used with permission from the author.

Jersey Water Works

The LRWP is pleased to be part of Jersey Water Works, a collaborative effort of many diverse organizations and individuals who embrace the common purpose of transforming New Jersey’s inadequate water infrastructure by investing in sustainable, cost-effective solutions that provide communities with clean water and waterways; healthier, safer neighborhoods; local jobs; flood and climate resilience; and economic growth. The LRWP is active on the Green Infrastructure subcommittee.

Jersey Water Works recently published Our Water Transformed: An Action Agenda for New Jersey’s Water Infrastructure – check it out! And plan to join Jersey Water Works for their annual conference on December 7 at the New Jersey Performing Arts Center in Newark!

Raritan River Festival 2019!

Stop by the LRWP table at the annual Raritan River Festival and Rubber Duck Race on Sunday, September 30! This is a free and family-friendly annual event celebrating our Raritan River.

Tons of fun activities are planned, including live music, environmental exhibitors, food vendors, activities for children, pony rides and a petting zoo, cardboard canoe races and the annual Rubber Duck Race.

The LRWP will be conducting water quality monitoring demos with the New Brunswick Environmental Commission and Rutgers Cooperative Extension, and hosting a special “hands-on” sculpture making workshop with our coLAB Arts partners. Don’t miss this annual summer festival in the City of New Brunswick!

1 2 3 9