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Introduction

The challenge for agencies and wetland managers is to sustain the quality and integrity of
wetlands by eliminating threats from natural and human causes. The role of monitoring is to
detect meaningful levels of change that exceed acceptable historical or natural limits. The
proposed study looks at sediment chemistry and contamination in the Lower Raritan River in an
effort to promote understanding of levels and extent of heavy metal and organic compound
pollution in the river sediment. This study complements historical sediment data collected by
various state agencies and NGOs and provide new and updated information critical to the future

enhancement and management of this highly impacted urban coastal area.

The objective of this study was to design and implement a sediment sampling system that would
be spatially representative of the main stem of the Lower Raritan and cover the previously
measured heavy metal and organic compound hotspots. The Raritan River basin is well known
for the historical industrial and related commercial uses that left a legacy contamination along its
banks that impacts the quality of the ecosystems both in the river, and the surrounding wetlands
in the bay. The collaborative restoration effort of the watershed started when under the umbrella
of the 1984 renewed Clean Water Act the Hudson-Raritan Estuary had become a national
watershed and in 1988 the estuary was accepted into the National Estuary Program (HRECRP,
2014). Ever since, numerous efforts have been dedicated to gage the levels and extent of the
legacy contamination in the estuary as the health of the river is central to the quality of life in the
region (Rutgers, 2009). 22 municipalities share the main stem of the Raritan River, however 5

counties encompassing 103 municipalities live on the watershed.

Between 2012 and 2015 the U.S. Environmental Protection Agency through a cooperative
agreement funded the EPA Rutgers Raritan River project to compile all existing data from
superfund sites, brown fields, known contaminated sites and point and non-point sources of
pollution into a comprehensive database of the Raritan River watershed. These datasets are
meant to assist federal, Sstate and local stakeholders in making decisions related to
environmental cleanup but have only a limited number of samples from the main channel of the
lower Raritan that were collected between 2000 and 2006. The Data Compilation and

Integration Report (2015)" concluded that for a successful restoration of the Raritan River “A

! http://cues.rutgers.edu/sustainable-raritan-river/pdfs/EPARutgersRaritanDataReport%20 09292015.pdf
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more comprehensive monitoring program needs to be completed on the Lower Raritan to collect
water and sediment samples and analyze these samples for priority pollutants and contaminants.”
The proposed study is designed to start filling in these data gaps following a sampling and

analysis strategy that meets NJDEP and EPA quality assurance criteria.

The study has two components. Component I — river sediment quality —measured metal and
organic contaminants associated with surficial sediment in the Lower Raritan River. The study
is designed to complement historical baselines of sediment contamination measured between
2000 and 2006 (STORET 2016)” and provides new and updated information from areas where
there are no official records of sediment samples in state or federal environmental datasets. The
main tasks of this component included: 1, Measure trace metal and organic contaminant levels in
surficial sediments along 20 km of the lower Raritan River using a transversal transect sampling
design. 2, Measure water quality parameters at two depths (surface and channel bottom) utilizing
the same surficial sediment sampling design. 3, Visualize the spatial distribution of trace metal
and organic pollutants in surficial sediments using spatial interpolation techniques. In
Component II — salt marsh sediment assessment — sediment cores from salt marsh environment
were analyzed to assess the environmental impacts of pollutants across space and time. The
main tasks of this component included: 1, Extract cores from three marsh sites (1) proximal, (2)
central and (3) distal to traditional industrial and agricultural sites, while capturing the elevation
gradient within the marsh surface by sampling (a) high- (b) mid- and (c) low-marsh
environments at each site. 2, Reconstruct pre-industrial environmental reference conditions and
natural variability prior to significant anthropogenic disturbance and identify the distribution and
longevity of industrial and agricultural pollution retained within the salt-marsh environments by
radiocarbon dating and geochemical analysis of the core sample; 3, observe any ecological shifts
that occurred due to the disposal and deposition of pollutants in the Raritan River by assessing

diatom and pollen abundance in the core sample.

? https://www.epa.gov/waterdata/storage-and-retrieval-and-water-quality-exchange
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1. Component | — River Sediment Quality
1.1 Introduction

The objective was to design and implement a sediment sampling campaign that would be
spatially representative of the main stem of the lower Raritan river and also re-sample the

previously identified heavy metal and organic contaminant hotspots from 2000-2006.

Component I. is divided into three main tasks: 1.- surficial sediment sampling and surface water

quality measurements, 2.- chemical analysis and 3.- data visualization and reporting.
Surficial sediment sampling/surface water quality measurements

The main stem of the Lower Raritan River between New Brunswick and the Raritan bay was
sampled according to the design presented in Figure 1. The design includes the seven locations
already in the STORET dataset (sampled between 2000 and 2006) and adds 33 new samples
along transects covering areas with data gaps. This approach is designed to capture a shore to
shore general pattern of contaminant distribution with sufficient resolution to understand the
overall pattern and possibly guide future collections around problem areas at even greater
resolutions. Surficial sediments were collected using a ponar grab sampler from a boat equipped
with a capstan winch and survey grade GPS to record coordinates for each sampling location. In
an attempt to eliminate the influence from the bay sampling took place during the ebb cycle of
the tide. Each sediment sample was a composite of three ponar grabs. Collected samples were
registered in a chain of custody form and transported to the lab in a cooler in pre-labeled Ziploc
bags. Along with the sediment sampling, surface water quality parameters (salinity,
conductivity, dissolved oxygen (DO), oxygen reduction potential (ORP), pH, turbidity, and
temperature) were measured at each sediment sampling location (when depth permitted) on the
surface and close to the channel bottom using a calibrated YSI 6920 V2-2 multi-parameter water
quality sonde. Water quality measurements were recorded in a field note book and later entered

in Microsoft Excel for further analysis.
Chemical analysis

Metal contaminates were analyzed at MERI's Environmental Chemistry lab using ICP-MS.
Determinations were made for the following priority pollutants: Antimony, Arsenic, Beryllium,

Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Silver, Thallium and Zinc.
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Total organic matter was determined by weight loss-on-ignition (LOI) method following Wang
(2012). Particle size distribution was determined from 100 gram samples from each of the
sampling stations. The major persistent organic pollutants (POPs) including 109 PCB congeners
and 18 OCPs were analyzed on an Agilent 6890 gas chromatograph equipped with electron
capture detector (ECD). Certified reference marine sediment (MESS-1) for soils was run every
tenth sample, and a method blank were run every sixth sample during the gas chromatographic

analysis.
Data visualization and reporting

The concentration values that resulted from the sediment chemical analysis were used to
visualize the distribution of contaminants of the main channel utilizing spatial interpolation
techniques. A spatial analyst toolset from ArcGIS software was run to interpolate concentrations
from measured locations at each of the 40 sampling points and fill in concentrations (with known
variance) for the entire main channel of the river. We chose to utilize the Inverse Distance
Weighted (IDW) raster interpolation technique as it references the observed concentration
sampling point values to predict values for cells that are in close proximity. This IDW process
assumes each sample point has a local influence that weakens with increasing distance. The
raster interpolation helps to visualize concentration gradients or hotspots of priority pollutants
and persistent organic pollutants in the channel. The geochemical index (Igeo) for each metal
was calculated by comparing the measured concentration to natural background levels according
to the local geology. The geochemical index value symbolizes the degree of contaminant
enrichment beyond the natural background value. Finally, IDW interpolation of the cumulative
trace metal pollutants at the 40 sampling points were mapped for visualization. This process
took the sum of all the priority pollutants at each sampling location and created a ranking system

to render which of these sampling locations are most impaired with respect to heavy metals
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1.2 Methods

1.2.1 The study sites

Surface sediment samples were taken at 40 sampling locations (Figure 1) and analyzed for major
contaminants of concern. State of the art interpolation techniques were then used to extend the
point data over the entire study arca and provide estimation of levels and distribution of

contaminants in the sediment.

Figure 1: Map of the study area and the sampling plan
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1.2.2 Surficial sediment sampling and surface water quality measurements

Sampling was completed in two separate missions. On April 10th, 2017 the Rutger’s Research
Vehicle boat (Rutgers RV) was used to sample the majority of the points at rising tide. A second

outing on April 26th was necessary to reach the shallow sampling points.
Water Quality Sampling

A YSI 6600 EDS multi-parameter water quality monitor was used at each sampling location to
obtain the following data: Turbidity, Temperature, Conductivity, Salinity, pH, DO, and ORP.
The sensor is certified by the NJDEP for all listed parameters and was calibrated before the
outing according to NJDEP guidelines. At each site location, the sensor was submerged into the
water one foot deep for surface measurements and approximately 1 foot above the river bottom
for deep measurements. The monitor is attached to an YSI 650 MDS reader and the

instantaneous results on the screen are recorded in a field notebook.
Sediment Sampling

For the first round of sampling we used the RV Rutgers that is equipped with a capstan winch (a
revolving cylinder with a vertical axis) used for winding a rope or cable, powered by an onboard
Skw generator and operated by foot pedal on a swing arm thus allowing for the quick retrieval of
the Ponar (clamshell) grab sampler after each surficial sediment grab. Each sample collected is a
composite of three Ponar sediment grabs. The planned sampling points based on the sampling
design were loaded into the RV Rutgers Garmin 1040xs radar/plotter/sounder, making accurate
navigation to each point possible. The RV Rutgers also used the Rio Grande Acoustic Doppler

Current Profiler to record the path that the boat took.

The second sampling mission was accomplished using a Go-Devil boat equipped with a mud
motor that allowed access to the shallow water areas. Samples were again taken with a ponar

grab sampler.

At each sampling location, three sediment samples were collected in labeled sample bags and
combined into one composite sample to ensure that the sediment sample is representative of that
site. Samples were then brought back to the lab and stored in a refrigerator set at 4 °C. Samples
were analyzed for: percent moisture, percent organic matter, metals, polychlorinated biphenyls

(PCBs), and organochlorine pesticides (OCPs).
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The GPS location of each sample site was recorded within a one to two meter vicinity of the
actual collection location. The locations were determined using a Trimble GeoXH 6000 Series
handheld GPS. Sampling locations were post-processed using GPS Pathfinder Office version
5.40 in order to achieve decimeter horizontal accuracy. Sampling locations were later associated
with the results from the chemical analysis and this spatial information was used to generate

thematic maps showing contamination distribution in the river sediment.

1.2.3 Chemical analysis
PCB and OCP Sample Preparation:

An accelerated solvent extractor (ASE 100, Dionex, USA) was used to extract PCBs and OCPs
from the sediment samples by using a mixture of hexane and acetone in a 1:1 ratio. After
extraction, gel permeation chromatography (GPC, Autoprep 2000, O I Analytical, USA) was
used to clean the samples before GC-ECD. The extracts were concentrated to ImL by rotary
evaporation at a temperature 30°C. The extracted samples were fractioned by florisil column
(10mm i.d. x 300 mm length) filled with 10 g of florisil (60-100 mesh; J.T Baker, NJ, activated
at 550 °C for 4 hours), and then partially deactivated by the addition of deionized H20 (2.5% by
wt.). The sample was loaded into the head of the florisil column and covered with a layer of
sodium sulfate to a depth of 10mm. The concentrated extracts were transferred to the florisil
column and subsequently eluted with 35 mL of hexane for PCB analysis. A second fraction for
OCPs analysis was eluted with 50 mL of dichloromethane and hexane in a 1:1 ratio and collected
in a separate vial. Each fraction was solvent exchanged into hexane while concentrated to 5 mL
via rotary evaporation. Each sample was finally reduced to 1 mL using a gentle stream of dry
nitrogen evaporator (N-EVAP 111, OA-SYS). All samples for 109 PCB congeners and 18 OCPs
were analyzed on a gas chromatograph equipped with 63 Ni electron capture detectors (GC-
ECD. Hewlett Packard 6890, Santa Clara, CA) with DB-5 (60m x 250 pum in inner diameter x
0.25 pum film thickness, J&W Scientific, CA). The temperature program of GC oven condition
was as follows: 100 oC held for 2 minutes; 4 oC/min to 170 oC, 2 oC/min to 280 oC, 1 oC/min
to 290 oC:; total time, 84.5 minutes. Daily single point calibration was used to generate response

factors for each congener relative to internal standards. Congeners were identified based on

13| Page



relative retention time, and PCBs and OCPs surrogates were spiked for QC recovery check.

Metal Sample Preparation

Metal concentrations were analyzed for the sediment samples with particle size less than 63um
using microwave assisted digestion and Inductively Coupled Plasma Mass Spectrometry (ICP-
MS). Dried sediment samples went through the 63um sieve first, and then about 0.2 g of
sediment sample was collected and digested with 10 mL of ultrapure nitric acid (HNO3, 67-70%,
w/w, EMD) in a microwave digestion system (MiniWave microwave digestion, SCP science).
Standard reference material 1944 (New York/New Jersey Waterway Sediment, NIST) was
digested with samples for quality control. After digestion, the samples were diluted to 50 mL
with ultrapure DI water and stored in polypropylene centrifuge tubes at 4°C for further analysis.
Solutions were analyzed using an ICP-MS (Agilent ICP-MS 7700X), and helium collision mode
with kinetic energy discrimination (KED) was used to effectively remove the multiple
polyatomic interferences in ICP-MS. Li, Sc, Ge, Y. In, Tb, and Bi were used as internal

standards for calibration. The recovery rates of quality control (QC) sample are 90-110%.

1.2.4 Data visualization

Following the chemical analysis of the Raritan samples, concentrations of the sampled sediments
were inputted into ArcGIS 10.3 geospatial software to visualize the sediment contaminants of the
main channel of the Lower Raritan River. The Spatial Analyst toolset was used to take the
sediment concentrations in parts per million (ppm) at our 40 sampling points and extrapolate
values in between these sampling transects to create a continuous surface of sediment
contaminant information for the lower Raritan. We chose the Inverse Distance Weighted (IDW)
linear raster interpolation tool for this visualization. The IDW spatial analyst tool inputs the
observed concentration sampling point values from the shapefile to predict and generate values
for cells that are surrounding it. The product of this IDW interpolation is a raster layer with each
pixel representing a contaminant concentration value. This is done using a linear algorithm built

within the tool that assumes a decrease in target value with increasing distance from an input
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point until it gets influenced by a neighboring input point. The raster interpolation helps to
visualize concentration gradients or hotspots of trace metal or organic pollutants in the
designated area of interest. In addition to visualizing the sediment concentrations, the
Geochemical Index (Igeo) of these samples was calculated by finding available background
sediment concentration values derived from the local geology. This index value represents the
degree of contaminant enrichment of the observed sediment beyond the natural background
value from the local geology. The Geoaccumulation Index formula (Forstner&Muller, 1981) is
calculated below (Eq. 1):
Cn

—

I = lo
po. — 02 1758
Equation 1. Geoaccmulation Index

The index is the logarithmic ratio of the observed concentration value to the background
geologic source concentrations. The background values referenced for these calculations were
documented in ‘Characterization of Ambient Levels of Selected Metals and Other Analytes in
New Jersey Soils: Year 1, Urban Piedmont Region’ (BEM Systems Inc., 1997). The Igeo values

fall into several classes that describe the degree of sediment contamination, below (Figure 2):

Figure 2. Geoaccmulation Index Classes
Index of Geoaccumulation, Igeo Designation of Sediment Quality

>3 Contaminated

2-3 Moderately Contaminated
1-2 Mildly Contaminated

<1 Practically Uncontaminated

The Geoaccmulation Index was also interpolated using the IDW raster interpolation tool in
ArcGIS. This generated raster outputs that represent the degree of sediment contamination
compared to the natural geologic background values, and represent the amount of anthropogenic

influence on sediments in the Lower Raritan.
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1.3 Results

Figure 3 shows the locations of the final sampling sites. Several points more upriver had to be
moved 10-30 feet compared to the original design as the water become shallower and the bottom

more rocky making it hard to collect enough sediment samples for the chemical analysis.

Figure 3. Study are map showing the labelled, final sampllng locations
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1.3.1 Water Quality in the Raritan River

The results of the water quality data show as expected that there is a decreasing gradient of Total
Dissolved Solids (TDS), salinity (Figure 4) and conductivity from the mouth of the river (P1) to
the final sampling point (T13-2). Turbidity exhibits the same trend from P1 through T13-2
(Figure 5). Dissolved oxygen (DO) remained about the same throughout the extent of the study
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area and at about 90% saturation (9.4 ppm, Figure 6). pH (Figure 7) follows similar trends with
a median of 7.5. The Oxygen Reduction Potential (ORP) measurements show a more oxidative
environment as one moves upriver from the bay. ORP measurements were in the vicinity of 200
mV. No negative ORP readings were found. (Figure §). Table 1 summarizes the water quality
data. There were a few sampling locations where the water was too shallow to submerge the
sonde’s sensors and reliably conduct water quality measurements. Hence water quality data
from locations T5-2, T7-1, T11-2, T12-2, T13-1 were not recorded. In case of T11-1, T12-1,
T13-2 the water was deep enough to conduct surface measurements however not deep enough to
warrant the bottom measurements and thus deep water quality records are missing from these
locations. We observe that differences between deep and surface samples are greater near the
bay than up river, especially for salinity. All other parameter measurements were similar at

depth and on the surface indicating a fully mixed system.

Figure 4. Salinity in the water column as well as from the bay to New Brunswick
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Figure 5. Turbidity in the water column as well as from the bay to New Brunswick.
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Figure 6. Dissolved Oxygen in the water column as well as from the bay to New Brunswick.
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Figure 7. pH in the water column as well as from the bay to New Brunswick.
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Figure 8. Oxygen Reduction Potential in the water column as well as from the bay through

New Brunswick.
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